Digital Aircraft Design Engineering with the j2 Universal Tool-Kit

AIRCRAFT MODELLING AND PERFORMANCE PREDICTION SOFTWARE

Key Aspects

INTRODUCTION

DIGITAL ENGINEERING

Offline Analysis and Batch Processing

Multiple Variants

Integrating External Systems Into the Model

Integrating with External Systems

Automation

CONCLUSIONS

INTRODUCTION

Since its inception, the j2 Universal Tool-Kit has been focussed on improving aircraft design and the aircraft design process. This is intended to support the development of aircraft from simple models looking at basic flying qualities through to high fidelity models for pilot training and aircraft certification. The off-line analytics provide an ability to build-in certification and test manoeuvres into the batch processing analytics and to track all results through the configuration management system means that it is possible to start certifying the aircraft from the very beginning of the design to ensure that there are no surprises later on.

Creating a digital twin and then building multiple variants (delta's), enables differing levels of uncertainty to be tested. This off-line analysis can also feed directly into the flight test program to ensure the impact of unknowns can be assessed and flight safety decisions made before actual flying starts. Post flight, the flight test data processing helps to refine the model and reduce the uncertainty at the same time as creating high fidelity digital twin models for use in real-time simulation. All this activity is easily performed through the Graphical User Interface (GUI) providing smooth workflow and easy to use steps.

What is sometimes overlooked is the ability for the j2 Universal Tool-Kit to interact with other systems and to run in a remote mode. Some of these features are becoming more valuable as we move to integrated digital engineering.

DIGITAL ENGINEERING

Offline Analysis and Batch Processing

When working with classic flight simulation, all analyses must be performed in real-time. This is very time consuming, especially if looking at multiple conditions.

The first thing to consider is the creation/calculation of initial conditions. As aircraft become more complex, so the identification of initial conditions becomes less straight forward. The j2 Universal Tool-Kit has a unique approach to identifying initial conditions. This uses a series of Trim Rules that enable the user to create any pairing of driving and target parameters. Ranges of target parameter values can be defined and the software will automatically calculate all the possible combinations.

Tries Medel Hierarchy				_				
Irim Model Hierarchy Peet Envelope								
A I AL B-TM - W = 0		PTH : U' = 0 a : asmma = 0 ° 1 [PT-R	T · O' = 0 % ^2 1 [\/ L	CEG.	EX · Elan Settin	a Position = 0 · Fuel	Fraction Position - 1	L Landing Gear Setting Position − 0 : Left Engine Inon
Elight Envelope	9111-21	The second se	1.4 - 0.3 211 000		r x r rup ooun	g.r oardon - e . r der	r racioniti conton - 1	- canong doar ootang, ronton - o . con Engine mop.
-O: Cascading Tri	m Conditi	ion Not Set						
Altitude Fixed	Velocity	Fixed Mach						
Flight Envelope								
O: Cascading Tri	m Conditi	ion Not Set						
Altitude Fixed	Velocity	Fixed						
🖻 💋 Flight Envelope								
- O, Cascading Tri	m Conditi	ion Not Set						
Altitude Fixed	Velocity	Fixed						
<								1
Parent Trim Conditions					Trim Conditio	ins		
Rule	Units	Parameter			Rule	Altitude Fixed	Velocity Fixed	
Alpha Trim	g	w.	0		Units	#t	kts	
Diabt Dath	g	U'	0		Parameter	н	IAS	
Tilgin Tatri	•	gamma	0			0	90	
Pitch Rate	°/s^2	Q'	0		2	0	95	
		Hap Setting.Position	0		3	0	100	
		Fuel Fraction.Position	1			0	110	
		Landing Gear Setting.Position	0		6	500	90	
VLJ-Contiguration Fixed		Left Engine Inop.Position	0		7	500	95	
		Right Engine Inop.Position	0		8	500	100	
		Passengers Position	3		9	500	105	
	1	_			10	500	110	
					11	1000	90	

Thus, complete flight envelopes covering multiple configurations can be created in seconds. The full set of flight conditions are then combined with an aircraft model and the complete data set is run as a batch Trim Analysis. The j2 software will find those conditions where the aircraft can achieve the targets and what the corresponding driving parameter values are to achieve them.

Aircraft Model									
😤 Safire/VLJ (EL)	- Versior	1 0.0.5							Å
Analysis Model									_
Safire/VLJ Enve	lope - V	ersion 0.0.2							-
	•								
- To Run		1	1	1	1	1	1	1	
Run	Result	Run Date	Case Item 1	Case Item 2	Case Item 3	Case Item 4	Case Item 5	Case Item 6	^
🔲 😭 Run	Good	20/06/2023 15:42:42	ALP-TM : W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 5000 ft	VEL-FX-MACH : Mach = 0.4	
Error - No sol	Bad	20/06/2023 15:42:43	ALP-TM : W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 5000 ft	VEL-FX-MACH : Mach = 0.5	
Error - No sol	Bad	20/06/2023 15:42:44	ALP-TM : W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 5000 ft	VEL-FX-MACH : Mach = 0.6	
Error - No sol	Bad	20/06/2023 15:42:45	ALP-TM : W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 5000 ft	VEL-FX-MACH : Mach = 0.7	
Run 🕞	Good	24/11/2021 21:26:04	ALP-TM : W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 6000 ft	VEL-FX : TAS = 205 kts	
🗆 📑 Run	Good	24/11/2021 21:26:04	ALP-TM : W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 6000 ft	VEL-FX : TAS = 230 kts	
🗆 📑 Run	Good	24/11/2021 21:26:05	ALP-TM : W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 6000 ft	VEL-FX : TAS = 255 kts	
🗆 📑 Run	Good	24/11/2021 21:26:06	ALP-TM : W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 6000 ft	VEL-FX : TAS = 280 kts	
🗆 📑 Run	Good	24/11/2021 21:26:06	ALP-TM : W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 6000 ft	VEL-FX : TAS = 305 kts	
🗆 📑 Run	Good	21/12/2021 09:53:54	ALP-TM: W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 6000 ft	VEL-FX : TAS = 330 kts	
Error - No sol	Bad	24/11/2021 21:26:09	ALP-TM: W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 6000 ft	VEL-FX : TAS = 80 kts	
Error - No sol	Bad	24/11/2021 21:26:10	ALP-TM : W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 6000 ft	VEL-FX : TAS = 105 kts	
🗆 📑 Run	Good	24/11/2021 21:26:10	ALP-TM : W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 6000 ft	VEL-FX : TAS = 130 kts	
🗆 📑 Run	Good	24/11/2021 21:26:11	ALP-TM: W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 6000 ft	VEL-FX : TAS = 155 kts	
🗆 📑 Run	Good	24/11/2021 21:26:12	ALP-TM: W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 6000 ft	VEL-FX : TAS = 180 kts	
🗆 📑 Run	Good	24/11/2021 21:26:12	ALP-TM : W = 0 g	FLT-PTH : U' = 0 g : gamm	PT-RT : Q' = 0 °/s^2	VLJ-CFG-FX : Flap Setting	ALT-FX : H = 8000 ft	VEL-FX : TAS = 205 kts	
	0.1	000000000000000000000000000000000000000	ALD THE ME O	FLT DTU UN O SUSSESS	DT DT OL AN AD	MULCEC EX Eles Calling	ALT EX. 11 0000.0	VELEX TAG ODD	

AIRCRAFT DYNAMICS Predicting Performance Templated charts can be used to automatically display the results.

AIRCRAFT DYNAMICS Predicting Performance With the j2 Universal Tool-Kit, manoeuvres are created as Response Models that can include any model inputs, initial disturbances, fixed parameters and external gust profiles. These can be combined together using arrays, expressions and constant values to add whatever level of complexity is required, from simple initial disturbances to excite the modes of motion through to certification manoeuvres.

The Aircraft Model and Response Model are combined in a Response Analysis. Any of the flight conditions and configurations found from any Trim Analysis can then be used as initial conditions. In a feature unique to j2, the Response Analysis can be run as a batch process. As this is an offline analysis, there is no requirement for the response to run real-time. As such the response will run as fast as possible, with the limiting factors on the speed of the analysis being model complexity, integration step, and processor capability. Once again, the results can be automatically plotted using chart templates.

Multiple Variants

When looking at trade studies and configuration changes, it is not always desirable to create different copies of the model for each variant. J2 Universal Tool-Kit provides two ways to create multiple variants.

The first approach uses the concept of Delta Models. A Delta Model is always referenced to the Baseline Model and allows changes to be added without compromising the baseline.

When the Baseline Model is updated the Delta Models automatically reference the new version without the need to make multiple changes across multiple models. All analyses track the version numbers of the Baseline and the Delta Models.

Aircraft Model	
King Air/King Air B200 (EL). Decrease Cm_alpha - Version 0.0.4	
🔧 King Air/King Air B200 (EL) - Version 0.0.98	
Analysis Model	
King Air/SPO - Version 0.0.2	

The second option is to parameterise the model. The model can have any number of inputs that in turn can be linked to any value. These inputs can be adjusted as the model is being analysed or initialised via the Trim Rules. Thus, ranges of model parameters can be evaluated in a single batch run.

Integrating External Systems Into the Model

There are two powerful API's built into the j2 Universal Tool-Kit that enable multiple systems to be integrated with the model or the model integrated with external analytical engines.

'J2 Developer' Items allow any external code to be integrated into the model. This code can be direct calculations linked into the model, middleware running external analytical tools or middleware driving Hardware in the Loop (HiL). Outputs from the j2 Developer Item are then placed back onto the model. When the model performs a calculation, the external code is also called and the results then returned to the model.

Multiple developer items can be added to the model to represent anything. The code only needs building once and can be re-used as multiple instances.

Where external code is trusted but is no longer under development, this can be integrated into the model

through the j2 Developer API and any future changes can be added on top through the j2 Universal Tool-Kit.

This helps to ringfence and protect any existing code whilst enabling models to progress.

Integrating with External Systems

In addition to j2 Developer, the j2 Active plug-in provides another API that enables external code to call the calculation engine of the model. This API can be called from any number of programs and languages.

J2 already use the j2 Active API with the j2 Matlab Toolbox plugin to enable Matlab/Simulink to integrate with the model and with the j2 Pilot plug-in that enables the models to be flown in real-time. With the j2 Matlab Toolbox, a j2 Block is placed into a Simulink model.

Any additional system models or control systems can then be connected up to the aircraft model.

The Simulink model can now be run as normal and tested with Matlab using the j2 Active API to call into the j2 model directly.

To ease the design and test of control systems further, the Simulink model can then be loaded back into the j2 Universal Tool-Kit using a j2 Matlab Aircraft Model. This connects the complete Simulink system back into the j2 environment so that all analyses can now be run through j2.

C:\Matlab\GT50_FADE	C.slx	
Aircraft Model		
Hill Helicopters/	GT50 Engine Test -	Version 0.0.304
-		
States Outputs Inpu	uts	
Name	Unit	Hint
Engine Enum	~	Engine State [1]
Ignitors On		Discretes Out [1]
Starter Command		Discretes Out [2]
Fuel On		Discretes Out [3]
Status(Off)		Discretes Out [4]
Status(On)		Discretes Out [5]
Status(Statup)		Discretes Out [6]
Status(Ground Idle)		Discretes Out [7]
Status (Spin Up)		Discretes Out [8]
Status (Flight)		Discretes Out [9]
Status (Wind Down)		Discretes Out [10]
GT50.RXNH	General	Analogue Out [1]
GT50.RXNSD	General	Analogue Out [2]
GT50.RXTQ	General	Analogue Out [3]
Main Rotor.RXNR	General	Analogue Out [4]
Speed Spare 1		Analogue Out [5]
Speed Spare 2		Analogue Out [6]
Eng Oil Temp	Temperature	Temp Out [1]
GT50.T2	Temperature	Temp Out [2]
GT50.T45	Temperature	Temp Out [3]
MGB Oil Temp	Temperature	Temp Out [4]
TBG Case Temp	Temperature	Temp Out [5]
Temp Spare 1	Temperature	Temp Out [6]
Temp Spare 2	Temperature	Temp Out [7]
Temp Spare 3	Temperature	Temp Out [8]
Pres Spare 1	Pressure	Press Out [1]
Pres Spare 2	Pressure	Press Out [2]
Pres Spare 3	Pressure	Press Out [3]
MGB Oil Pres	Pressure	Press Out [4]
Eng Uil Pres	Pressure	Press Out [5]
G150.P2	Pressure	Press Out [6]
G 150.P3	Pressure	Press Out [/]
GIDU.WFE	Mass How	Fuel Out [1]
Vibe Sensor		Fuel Out [2]
FMV Actual		Fuel Out [3]
FMV Command		FMV Out [1]
NHd		FADEC Internal [1]
NHa		FADEC Internal [2]
NH PID		FADEC Internal [3]
Anticipator		FADEC Internal [4]
		FADEC Internal [5]

This also enables the Simulink model to be tracked through the j2 configuration control system.

Other tools can be connected into the j2 models in the same way that Matlab can, using the j2 Active API to provide further integration.

Automation

The final stage is to be able to automate the analytics from other tools to run optimisation tasks or as part of a larger design cycle process. To this end, the j2 Universal Tool-Kit provides multiple command line functions that can be used in scripts or batch files to run analyses without loading the Graphical User Interface (GUI).

This can be used for processing large sets of cases over extended periods of time or for running a parametrised model with inputs defined through external tools and then reviewing the results before performing additional analyses. In this way, optimisation routines can be used to investigate complicated models over a range of test cases without any operator interaction required.

CONCLUSIONS

The j2 Universal Tool-Kit can be integrated with multiple external tools and languages into the aircraft model, including HiL and can then be used to run multiple offline analyses at whatever rate the user chooses. These analyses can be run on a single model or across multiple variants and the results compared. The whole system includes version control and configuration management, keeping track of all results and what version of the models were used to create them.

External tools can be integrated with the j2 Aircraft models for additional analyses using a built in API. Further offline analyses can be performed using the command line system to support the integration of the analyses into optimisation routines and process management systems.

Further work is also in progress for expanding the j2 Developer API and to allow variants to be combined as well as integration with tools such as Siemens Teamcenter and Simcenter as overarching full project management systems.

